Delivery of Antibacterial Nanoparticles into Dentinal Tubules Using High-intensity Focused Ultrasound

Annie Shrestha, BDS, MSc,* Siew-Wan Fong, PhD,† Boo-Cheong Kboo, PhD,‡§ and Anil Kishen, BDS, MDS, PbD*

Abstract

Introduction: High-intensity focused ultrasound (HIFU) produces collapsing cavitation bubbles. This study aims to investigate the efficacy of collapsing cavitation bubbles to deliver antibacterial nanoparticles into dentinal tubules to improve root canal disinfection.

Methods: In stage 1, experiments were performed to characterize the efficacy of collapsing cavitation bubbles to deliver the miniature plaster beads into a tubular channel model. In stage 2, experiments were conducted on root-dentin blocks to test the efficacy of HIFU applied at 27 kHz for 2 minutes to deliver antibacterial nanoparticles into dentinal tubules. After the stage 2 experiment, the samples were sectioned and analyzed using field-emission scanning electron microscopy and energy dispersive X-ray analysis.

Results: The stage 1 experiment showed that collapsing cavitation bubbles using HIFU delivered plaster beads along the entire length of the tubular channel. It was observed from the stage 2 experiments that the diffusion of fluids alone was not able to deliver antibacterial nanoparticles into dentinal tubules. The collapsing cavitation bubbles treatment using HIFU resulted in significant penetration up to 1,000 nm of antibacterial nanoparticles into the dentinal tubules. The statistical analysis showed a highly significant difference in the depth of penetration of antibacterial nanoparticles between the two groups (<0.005).

Conclusion: The cavitation bubbles produced using HIFU can be used as a potential method to deliver antibacterial nanoparticles into the dentinal tubules to enhance root canal disinfection. (J Endod 2009;35:1028–1033)

Key Words
Cavitation, dentinal tubules, nanoparticles, tubule penetration, ultrasonic
crustaceans (26). Chitosan nanoparticles have been used in various fields in the treatment of bacterial biofilms as well as wound healing primarily because of their antimicrobial properties and biocompatibility (26, 27). Chitosan nanoparticles have also been applied in various fields of medicine and science such as a carrier for the delivery of drugs and gene in vivo to treat various systemic disease conditions (28–30). Chitosan in the nanoparticles form has been reported to have low levels of cytotoxicity (28, 29). These nanoparticles by virtue of their size can be delivered into complex anatomies. Chitosan nanoparticles have been shown to provide a significant improvement in the root canal disinfection by effectively eliminating the residual adherent and nonadherent bacteria as well as increasing the diffusion of antibacterial components from the root canal sealers (31).

High-intensity focused ultrasound (HIFU) is applied clinically to generate collapsing cavitation bubbles in fluids and tissues, which collapses with high-speed jets that can be used for drug delivery. Earlier experiments have applied collapsing cavitation bubbles dynamics to pump liquid from one side of a perforated plate to the other side (32, 33). In this investigation, the high-speed jetting of collapsing cavitation bubbles produced by HIFU has been tested for the delivery of antibacterial nanoparticles into the dentinal tubules. The antibacterial chitosan nanoparticles used in this study have an average size of between 80 to 120 nm, which is smaller than the dentinal tubule.

The experiments were conducted in two stages. In stage 1, the experiment was performed to characterize the efficiency of collapsing cavitation bubbles to deliver particles through a channel. The stage 1 experiment aided in understanding the mechanism involved in the delivery of antibacterial nanoparticles into dentinal tubules. In stage 2, in vitro experiments were conducted to deliver antibacterial nanoparticles into the dentinal tubules.

Materials and Methods

Stage 1: Characterization Experiment

Figure 1A shows the schematic of the experimental setup for the characterization experiment. A 3.7-cm long acrylic block (Young’s modulus, $E = 3$) was used in this experiment because the bubble dynamics is sensitive to the elasticity of the material in an ultrasound field (10). The acrylic block was held in place by a holder, and a tubular channel of 3.3 mm in diameter was made in the block with a drill. The refractive index of the acrylic block was similar to that of water, and, therefore, very little image distortion was observed (Fig. 2). This allowed the plaster beads (2-mm diameter, representing particles) present within the channel to be photographed clearly. Two electrodes made of thin copper wires of 0.11 mm were wound on two wires that were connected to a discharging circuit consisting of a charged capacitor of 3,300 μF (charged to 52 V). This capacitor was connected to the crossing point of the electrodes (where the bubble was generated). The spark bubble was generated by discharging a capacitor which was charged to 52 V. More details of the spark bubble circuit can be found in Lew et al (32). The acrylic block (with a hole) was held at the water tank by a holder, and the plaster ball was placed right on top of the acrylic block below the crossing point of the electrodes (where the bubble was generated). (B) HIFU experimental arrangement used for in vitro experiments on dentine samples. The sample was attached by using adhesive glue to a glass rod and immersed into a test tube with antibacterial nanoparticles suspension. The test tube rested on the bowl-shaped transducer. High-intensity ultrasound was generated by the transducer, which was driven by the voltage amplifier at 126 V (with continuous 27-kHz sinusoidal signal from the function generator).

Stage 2: HIFU To Deliver Antibacterial Nanoparticles into the Dentinal Tubules

Chitosan polymer (low viscosity) and sodium tripolyphosphate (TPP) were purchased from Sigma Aldrich (USA). All other chemicals used were of analytic grade. Chitosan antibacterial nanoparticles were synthesized by ionic gelation as described in the literature (30). In brief, chitosan was dissolved in an acetic acid aqueous solution (0.1%) at the concentration of 1.2 mg/mL and TPP (1%) solution was prepared in distilled water. Chitosan and TPP were mixed (3:1 v/v) under magnetic stirring at room temperature. The solutions were centrifuged (15,000 rpm/20 minutes/18 °C) and washed twice in distilled water and freeze dried for 24 hours. The antibacterial-nanoparticles obtained ranged 80-120 nm in size as determined using field emission scanning electron microscopy (FESEM, JEOL, Tokyo, Japan). The experimental setup used in the study is shown in Figure 1B. The FUS used in the study was generated by a disk ceramic transducer of 8.0 mm diameter at 27 kHz, with a driving voltage of about 126 V. The disk had a natural frequency of 2 MHz. It was driven by a voltage amplifier connected to a waveform generator. Sinusoidal wave of peak-to-peak amplitude 1.2 V and 27 kHz was used as a source. The disk rested on a brass holder that served...
food suspensions for 2 minutes. In case of HIFU exposure, samples from group 1 were immersed in antibacterial nanoparticles in the same HIFU setup for 1 minute for uniform dispersion. Teeth prepared in acetic acid aqueous solution (pH = 5) and ultrasonicated of 5.25% sodium hypochlorite to remove the smear layer and expose approximately at 1.5 mm and 3 mm, respectively. The flattened root were taken for the study. Apical thirds were sectioned off to make all the sample length of approximately 8 mm. Roots were halved labiolingually with root canal in between. The root canal groove was ''pushed'' by the flow down the entire length of the channel.

Figure 2. (A-G) The collapse of a spark discharge bubble of maximum bubble radius, \(R_{\text{max}} = 3.3 \text{ mm} \) (taken horizontally from frame \(B, t = 0.46 \text{ milliseconds} \)), on top of a tubular channel of 3.3-mm diameter. The timing for each frame in milliseconds; \(t \) is indicated at the bottom right. The bubble collapses at \(t = 0.73 \) (C) milliseconds with a jet speed of about 68/ms. The electrodes where the bubble is generated are placed 2.3 mm above the channel. The rubber plaster balls are centered initially 2 mm from the top of the channel opening. It can be seen from frame \(t = 1.3 \) to \(t = 5.8 \text{ ms} \); the rubber plaster is “pushed” by the flow down the entire length of the channel.

as a backrest for the transducer. Both the disk transducer and the holder were submerged in a water tank of about 15 × 15 × 15 cm³.

Ten dentin sections from five intact human single-rooted teeth, free of cracks and caries extracted for periodontal reasons, were selected for this study. Teeth were sectioned at the cementoenamel junction, and the roots were taken for the study. Apical thirds were sectioned off to make all the sample length of approximately 8 mm. Roots were halved labiolingually with root canal in between. The root canal groove was flattened by using emery paper of grit sizes 600, 800, 1,200, and 4,000. The thickness and width of all the samples were maintained approximately at 1.5 mm and 3 mm, respectively. The flattened root canal surface was flushed with 2 mL of 17% EDTA followed by 2 mL of 5.25% sodium hypochlorite to remove the smear layer and expose the dentinal tubules. The 10 dentin sections were divided into two groups with five samples in each as follows: group 1: control group, dentin specimens immersed in antibacterial nanoparticles suspension without exposure to HIFU, and group 2: antibacterial nanoparticles group, dentin specimens immersed in antibacterial nanoparticles suspension and exposed to HIFU.

Antibacterial nanoparticles suspensions (2 mg/mL) were prepared in acetic acid aqueous solution (pH = 5) and ultrasonicated in the same HIFU setup for 1 minute for uniform dispersion. Teeth samples from group 1 were immersed in antibacterial nanoparticles suspension for 2 minutes. In case of HIFU exposure, samples from group 2 were immersed in antibacterial nanoparticles suspension with the dentinal tubular openings facing the ultrasonic plate at approximately 1.5 cm above the ultrasonic plate. The teeth samples were exposed to HIFU for 2 minutes. The samples were removed, stored in a desiccator, and subjected to FESEM and energy dispersive x-ray (EDX) analysis (JEOL). Vertical grooves were made using a slow-speed micromotor along the long axis of the root on the mesial and distal surface and split into two halves using a chisel, exposing the dentinal tubules. The samples were then platinum coated for 60 seconds and viewed under FESEM to ascertain the depth of penetration of the antibacterial nanoparticles within the dentinal tubules, whereas EDX analysis was used to determine the elemental concentration of the chitosan constituents to reconfirm the presence of antibacterial nanoparticles within dentinal tubules. During the analysis of the FESEM images, the depth of penetration of antibacterial nanoparticles into the dentinal tubules was categorized under three grades: grade 1 indicated the penetration of antibacterial nanoparticles to a depth of 500 μm from the root canal lumen, grade 2 indicated the penetration of antibacterial nanoparticles to a depth of 500 to 1,000 μm from the root canal lumen, and grade 3 indicated the penetration of antibacterial nanoparticles to a depth of more than 1,000 μm from the root canal lumen. The nanoparticles penetration was assessed for all the 10 samples, and grades of 1 to 3 were given depending on the depth of penetration. A paired \(t \) test was performed to evaluate the statistical significance with <0.05 as the significance level.

Results

Stage 1: Characterization Experiment

It was observed from this experiment that cavitation bubbles are formed all around the plaster bead when the HIFU was applied. The bubble grew to a maximum size with \(R_{\text{max}} \) (maximum radius) of 3.3 mm in 0.46 milliseconds time (\(t \)). At this point of time, the bubble had overexpanded, resulting in a lower pressure inside the bubble than its environment causing the bubble to collapse as seen in the frame \(t = 0.80 \text{ milliseconds} \). The collapse of cavitation bubble generated a high-speed jet, which moved toward the channel at about 68/ms. This jet delivered the bead of plaster (5.8 mg), which was originally placed about 2 mm from the top of the channel, into the whole length of the channel.

Stage 2: HIFU To Deliver Antibacterial Nanoparticles Into the Dentinal Tubules

FESEM images of all the five samples from group 1 without the application of HIFU did not show the presence of antibacterial nanoparticles within the dentinal tubules and were scored as 0 (Fig. 3A-C). The openings of dentinal tubules toward the root canal lumen were also devoid of antibacterial-nanoparticles (Fig. 3A). The FESEM images of five dentin samples from the group 2 treatment group with HIFU exposure showed antibacterial nanoparticles penetration inside the dentinal tubules (Fig. 3D-F). The antibacterial nanoparticles were found to enter as deep as 1,000 μm into the dentinal tubules. Four out of five samples from group 2 were given grades of 2, and the remaining one was graded as 1 depending on the penetration of antibacterial nanoparticles. The statistical analysis showed a highly significant difference in the depth of penetration of antibacterial nanoparticles between the two groups (\(<0.005 \)). The HIFU was not able to deliver nanoparticles to more than 1,000-μm deep. The antibacterial nanoparticles were seen as aggregates within the dentinal tubule lumen. However, the distribution of the antibacterial nanoparticles was not uniform within the dentinal tubule (Fig. 3E)
and F). The ratio of nitrogen to carbon atomic mass percent obtained from the EDX spectrum was calculated. The dentin samples from the antibacterial nanoparticles treatment group with HIFU treatment showed higher nitrogen to carbon ratio (0.936) as compared with the dentin samples from the control group (0.512) without HIFU treatment (34).

Discussion

The ultrasonic system can produce two types of cavitations, one is a stable (noninertial) cavitation and the second is a transient (inertial) cavitation (35). Stable cavitations result from the linear pulsation of gas-filled bodies in a low-amplitude ultrasound field, which is mostly produced by dental ultrasonic system. In dental ultrasonics, transient cavitations occur only when the file can vibrate freely or with minimal contact within the canal (35, 36). The generation of inertial cavitation within the root canal depends on several factors. The files having a square cross-section and sharp edges produced significantly more inertial cavitations than a normal K file (35). The generation of inertial cavitation within the root canal depends on several factors. The files having a square cross-section and sharp edges produced significantly more inertial cavitations than a normal K file (35). In a curved canal, a preshaped file resulted in more inertial cavitation rather than a straight file (35). The ultrasonic irrigation of root canals has also been shown to be influenced.
by canal taper, the application of irrigants, irrigation times, and the smoothness of the file used (6).

In case of transient or inertial cavitation, the gas bubbles undergo highly energetic pulsations. These inertial bubbles have been shown to collapse, radiating shockwaves and sufficient internal gas pressures to deliver particles into tubular spaces as observed in the characterization experiment (stage 1). When tested with dentin (stage 2), these bubbles collapsed when they came in contact with the dentinal surface, generating optimum internal gas pressure to deliver the antibacterial nanoparticles deep into the dentinal tubules. The penetration of antibacterial nanoparticles could be affected by the type of cavitation generated by the ultrasonic systems. Previous attempts to improve root canal disinfection by the use of ultrasonic systems showed limited benefits (25). This limitation can be attributed to several factors such as the type of bubbles or cavitations produced by the dental ultrasonic, the ability of the disinfectant to flow into the anatomical complexities and dentinal tubules, and the antimicrobial effect of the disinfectant. The cavitation produced by dental ultrasonics or endosonics are of both inertial and noninertial types. If noninertial cavitation occurs instead of the inertial type, the antimicrobial irrigants and antibacterial nanoparticles may not penetrate to the desired depth into the dentinal tubules. By using HIFU under the parameter used in this study, the penetration of antibacterial nanoparticles up to 1.000 μm into the dentinal tubules was observed, which can further improve root canal disinfection. To apply HIFU in endodontics, focused ultrasound should be generated intracanal. This can be achieved by using piezo ceramic crystal on the tip of a nonvibrating file or extracorporeal use of HIFU. To apply HIFU in endodontics, focused ultrasound should be generated intracanal. This can be achieved by using piezo ceramic crystal on the tip of a nonvibrating file or extracorporeal use of HIFU.

Chitosan consists of amine groups that contribute to its nitrogen content (34). The higher ratio of nitrogen to carbon can be attributed to the presence of chitosan antibacterial nanoparticles within the dentinal tubules, which possess many nitrogen groups as observed from the EDX analysis (27). Chitosan is soluble only in acidic pH ≤ 6, and the antimicrobial effect has also been shown to decrease with increase in the pH (27, 39). In this study, chitosan antibacterial nanoparticles were dispersed in aqueous acetic acid solution. Because the acidic solution can induce demineralization effect on dental hard tissues, future experiments will be focused in using a water-soluble chitosan (such as quaternized chitosan) (40). The microscopic analysis showed that the distribution of antibacterial nanoparticles within dentinal tubules was not uniform and tended to aggregate. The study also showed that the diffusion of fluids alone was not enough to deliver antibacterial nanoparticles into the dentinal tubules, but additional forces in the form of collapsing cavitation bubbles were required. Earlier studies have shown the ability of antibacterial nanoparticles to disinfect root canal system by inhibiting bacterial adherence and improving the ability of root canal sealers to diffuse the antibacterial effect (31). The findings from this study showed the potential application of HIFU-generated collapsing cavitation bubbles to deliver antibacterial nanoparticles into the dentinal tubules and subsequently improve disinfection in endodontics.

References